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used instead of a lumped resistor). Table Il shows the same balangg Improved Algorithm of Constructing Potentials From

for m. Here,Vi.op (¢), calculated usind’y, is the EMF along the cur- Cauchy Data and Its Application in Synthesis of
rent loop. Finally, Table IV shows, fas, a balance in the frequency Nonuniform Transmission Lines

domain (1.8 GHz) between the source power and corresponding flux

leaving the grid boundaries. To avoid static fields, both methods de- Gaobiao Xiao and Ken'ichiro Yashiro

scribed above are used. Calculated data are compared to the analytic

value of the power delivered by an ICE of the same length (first row).

The observed deviation is within 0.15%; a figure that would not be Abstract—t is required to construct a potential function from Cauchy
reached without using methods to prevent static fields. If these fields @@ in the synthesis of arbitrarily terminated nonuniform transmission

. . . nes. An improved algorithm for this problem is discussed in this paper.
not removed in accordance with the techniques suggested here, sp ﬁthe pro?)osed algorithm, not Onl)Fl) is computation time reduce?j, %ut

post-processing of data [9], [10] is needed. Otherwise, an instabilfi possible divergence of the potential function that sometimes occur when

is produced by Fourier transforming, even when time-domain fieldatiopting the successive approximation method is also avoided. It has been

values converge satisfactorily. applied successfully to designs of nonuniform transmission-line filters or
tapers through solving inverse problems.

V. CONCLUSIONS Index Terms—Filter, inverse problem, nonuniform transmission lines.
Apart from high-frequency applications, the FDTD method is also
capable of solving static problems. The nonrecognition of this ability . INTRODUCTION

has led some investigators to consider such solutions, which may causgne synthesis of nonuniform transmission lines (NTLs) has been
serious problems in the frequency domain, as numerical artifacts.jlyestigated by many authors [1]-[4] and, among them, the methods
this paper, besides proposing techniques to eliminate them, we hg¥8ed on solving inverse scattering problems are probably most
presented the possibility of using the FDTD method in static and quagiomising. We have proposed a numerical method to synthesize
static calculations (electric and magnetic dipoles). However, it has n@bjtrarily terminated NTLs by solving a related inverse classic
yet been determined if the FDTD method can efficiently compete with

consolidated scalar techniques because it typically still involves an ex-

cessive number of time steps needed to attain acceptable solutions. Manuscript received May 14, 2001.
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Sturm—Liouville problem, which may be used to design NTL filters 0
or tapers [5]-[7]. R
In the method proposed in [5], the telegrapher’s equation that de- © known data
scribing the voltage(z, ¢) and current(x, ¢) on an NTL is cast into
a classical Sturm—Liouville equation ® to be calculated
1 (l’])
=" (x, A) +q(@)d(x, A) = Ao(x, A) 1)

whereg(x, ) = v(x, \)/+/Zo(x), X isthe angular frequencifp ()

is the characteristic impedance of the NTL, ani$ the electric posi-

tion defined in [1]. The potential function(x) relates toZ,(«) by b

[1/VZ@)" — q(x)[1/Z(x)] = 0. 5 DG
We may synthesize an NTL in two steps. At first, approximate a req- 0 m> 1 z

uisite S-parameter in terms of entire functions by adjusting eigenvalue

sequences corresponding to (1), and then solve the inverse problerfii@fl. Mesh structure for calculating(«, ) andg(x).

recoveringg(x) from those eigenvalue sequences. The first step may

be carried out by solving a constraint approximation problem, while Il. | MPROVED ALGORITHM

e

he i lem in th I ical

the inverse prob em |n_t e second step may be solved by a numerlcaLetw — ALt = jA, whereA = (/N,i = 0,1, ..., N,j =

method, as described in [8]. 0.1 H the followi dified f la to di ti
Denote two linearly independent solutions of (1) by(z, A) . R ¢. here, we use the foflowing moditied formuia to discretize

and y2(x, \). They are subject to boundary conditions o‘ )

y1(0, A) = 1, 41(0,2) = 0,andy2(0, A) = 0, y2(0, A) = 1.

. (i) =2|Ky(N,2i— N)+ K,(N,2i— N
Theoretically,q(x) can be recovered from the two zero sequences 6&2) [ V(N 20 )+ Ko (N, 2 )]

y2({, X) andy5 (¢, \). The following integral transformation [8]-[10] N , '
is well used: —2A Z g(m)K(m, 2i —m) (6)
m=i+1
in (\/Xr) sin (\/X s) and from (3), we can write
yo(w, \) = ——~- + / K(z,s) ——=—%ds. (2) i
2 0 VA K(i, )=K@+1, j+ D)+ K(i+1,j—-1) = K(i+2,j)

The kernelk (z, t) satisfies +A%q(i+ DEG+ 1. 5). (7)

In this way,q(7) and K (¢, j) are only related to data in regiom > :.

Ki(z, t) = Kpo(2, t) + g(2)K(z, 1) =0 (3) Inotherwords, if those data in regiem > i are known, ther(7) and
i 1 f* K (i, j) can be calculated directly.
K(x, x) = ) / qa(s)ds In Fig. 1, the values at pointsare all known and serve as initial data,
K(z, 0) =0. 0 4) namely, K(N, j), K(N - 1,45),7 =0,..., Nand K (i, 0) = 0,
’ i=0,..., N.

If we examine (5) more closely, we will see thataat= ¢, ¢(() =
%[I{t(f, ) + K. (L, £)] is actually the exact value @f(x) atz = (.
Certainly, we should not assume that) = 0 at first and then find
the already known data fai(¢) through iterations, as in the algorithm
q(x) =2 [I(t U, 22— L)+ K, (£, 20 — /;‘)] described in [8]. Thus, in this paper, initial data also inclgg®’) =

” 2[K(N, N) 4+ K.(N, N)],andg(N — 1) = 2[K((N, N — 2) +
-9 / q(s)K (s, 20— s)ds. (5) NL.(N,N=2)]-2A¢(N)K(N, N -2).
@ Basically, by using (6) and (7) alternatively, we can fifdvV — 2)
and K(N — 2, j) from known data ofK’ (N, j), K(N — 1, j) and

e o e O o 1Y = 1). The resutantvalves re ey tose e can ex
y Y : y + P&t to obtain for a specified spacing and need not be recalculated

can solve (5) by the sgccessive gpprpximation method. A typif:al rough iterations. In the same way, we can calculate the values of
gorithm of the su_cc_e_sswe approximation mgtho_d ma_y be orgamzedﬁ&ﬁ ) andq(i) atlinei = N — 3, and so on, until all the values
follows: assume initial data(z) = 0 for the first iteration and solve of K'(i, j) andq(i) in region|t| < = < ( are found. No iteration is

thel I;ernel[x’ (z, f’é forloT ©) 'rT regu:[]ﬂ tl< e Sdlattlen from (5,)’,Ea:' needed, and stable numerical solutiong(@f) are always obtainable.
culate a renewed data gfx); use the renewed data fz) as initia The memory needed in the present method is also much smaller. In

. dwh N hed. In th ¢ an NTL fil e’ successive approximation method, all the values of the kernel, an
is stopped when a stabié-r) is reached. In the case of an er, v« v matrix, should be stored for the next iteration, while only three

¢(z) is usually large and also oscillates rapidly. We found that about LBccessive lines of the kernel dat& & N matrix, need be stored in
iterations are often needed to get a stable numerical solutig(xof the new method. '
Moreover, we even cannot obtain a stable numerical solutiarof

with the successive approximation method when the fractional band-

width of the NTL filter is very wide. This is possibly caused by the fact

that the first guessed data@f(«+) = 0 may be far away from the real Take an NTL bandpass filter with 100% fractional bandwidth as an
value ofg(z). In this paper, we present an algorithm to find the numeexample. The NTL filter is terminated witd, atz = ( and Z, at

ical solutions without iterations. 2« = 0. The incident and reflected wavessat= 0 serve as the input

Integrating (3) by parts in a proper region yields the followin
\olterra-type equation [8]:

I1l. EXAMPLE
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Fig. 2. Results of an NTL filter with a passband of 2-6 GHz. (a) Constructed potentials. Convgrgpi obtained by the proposed method (new method),
while ¢(2) diverges by the successive approximation method (old methdd}. 10 000. (b) Corresponding characteristic impedance of the designed NTL filter.
(c) Simulated S11(jw)| of the NTL filter.

signal and output signal of the filter, respectively. Thus, the frequenpy and\; are zeros ofj2(1, A) andy5(1, ), respectively./P; =
response of the filter may be characterized9y. It is assumed that (j — 0.5)w, /Q; = j=. and}M is the number of zeros taken into

|S11] = 0.9 through the passband of 2—6 GHz, d%d:| = 0 else-
where.
Here, we choose the normalizing frequenty= 1 GHz, and( =

account. In the example, we chodgle= 60, thus, the frequency range
under consideration is up to = 60, which is enough to cover the
passband. From the facts thgtand); interlace andj2 (1, A1) > 0,

1. This means that the length of the NTL filter is the same as thg(1, u1) < 0, we have to find:;, A, andZ(0), Z(1), which satisfy
guided wavelength af. [7]. When time delay is taken into account,the following equations:

the requisiteS, ; (jw) may be written as;; (jw) = 0.9¢ 7% forw €

(47, 127). Following the algorithm described in [5] and assuming that

k(1) = 0, we use the following equations to approximate (jw):

Zng‘ q()\l)

g2 (1, Ng) = (=1)t | 2290l A 12
! ZyZy w1+ 50 gl A =20 Z(0)Z(1) /X; (12)

2l ) =7 20(0)20(1)“< St ) ® 70
oL, ) = (1) | 2= g(s), i=1.... M (13)

Zo(0)Z, Si2

whereg(\) = |14 S11/S21|. Equations (12) and (13) correspond to

h h ire functi 1, A y5(1, A : . e )
where the entire functions(1, A) andys (1, A) can be expressed as [5, egs. (67) and (68)] (but notice that there is a misprint concerning

sin (\/X) Iy the signs of [5, (67) and ((_58)])_. In additi_o_n, a\t_: 0, we have
2 (1, \) = H Hi -A (10) y5(1, 0) = +/Z(1)/Z(0), which is a condition discussed in [7],
' VA ol Q;—A and is equivalent to the condition &-(0) = B>g(0), which has
M been adopted in [5].
yo(1, \) = cos (ﬁ) A = )‘_ (11) Equations (12) and (13) are nonlinear equations and can be solved
- Pi— A approximately by minimizing the following object function through
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adjustingp;, A; andZ(0), Z(1): The Reentrant Wide-Band Directional Filter
Er[Xi, piy Z(0), Z(1)]

- i sin (V\:) ﬁ i = Ai
=1 =R

Anatoly Petrovich Gorbachev

Abstract—A new type of a wide-band microwave filter is described and
2 named the reentrant directional filter, in which resonance occurs in the
2,2 g(A»}

2(00Z(1) Vx

(= )i+1 form of a traveling wave rather than in the conventional form of a standing
wave. This device is the network, which has the constant input impedance
) and is manufactured as the directional coupler’s free construction. An anal-
M N, — i - 1z,2(1) ysis of the reentrant directional filter shows it to have advantages in the
cos (/i) H =t (1Y g g(pi) case of wide-bands when compared to previously used directional filters.
J=1 Py — pi 2(0)Ze This filter finds application in multiplexers, as well as in matched bandpass
(band-stop) filters by using planar multilayer transmission-line technology.
Experimental results verify the theoretical approach.

M
>
i=1

M

As ZW) | (14)

T TV Zo)

Index Terms—Pirectional filters, microwaves, multilayer, strip-line

. components, wide-band.
The resultani:; and\; are used to generate Cauchy data, while the

resultantZ(0) andZ(1) are used as boundary data to calculdte )
from ¢(x). The successive approximation method described in [8] I. INTRODUCTION

failed to recover;() from the Cauchy data. As is shown in Fig. 2(2), ¢ is well known [1] that directional filters are one type of device ca-

¢(x) diverges after two iterations. However, we can use the propos&&tole of performing systems that use frequency-division multiplexing.

method to calculate(x) without difficulty. For reference, Fig. 2(b) For example, wide-band multiplexers have been analyzed and con-
and (c) shows the related characteristic impedance and simul%%cted as described in [2].

|S11(jw)| of the NTL filter, respectively.

7=1

The basic directional filter proposed in [3] has been developed in
many papers [4]-[6]. However, the above-mentioned directional filters
IV. CONCLUSIONS are themselves badly adapted to multilayer (multilevel)-strip transmis-
When applied to constructing ) from Cauchy data, the successivesion-line technology, which has been an increased interest in recent
approximation method suffers from two disadvantages, i.e., severaDiars in RF integrated circuits. For instance, the analysis and design of
erations are needed and they sometimes fail when the correspondihdtilayer coupled-line directional couplers has recently been reported
q(x) is large and oscillates rapidly. In the present algorithte) can  in [7].
be recovered straightforwardly from Cauchy data by using the exactThis paper present a novel wide-band directional filter called a
data of¢(x) at = ¢ and adopting a proper discrete form of the relatedg€eentrant directional filter,” which is better adapted itself to multilayer
integral equation; hence, the above disadvantages are avoided. TheP#par transmission-line technology through the full screening of its
merical error of the proposed method mainly depends upon samplfiggments.
spacingA.
Il. ANALYSIS
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