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TABLE III
ENERGY CONSERVATION FORm (STATIC CASE)

TABLE IV
POWER BALANCE FORp AT 1.8 GHz.I = 1 A

(a) analytic result.(b) resistor.(c) zero mean value pulse.

used instead of a lumped resistor). Table III shows the same balance
form. Here,Vloop(t), calculated usingE�, is the EMF along the cur-
rent loop. Finally, Table IV shows, forp, a balance in the frequency
domain (1.8 GHz) between the source power and corresponding flux
leaving the grid boundaries. To avoid static fields, both methods de-
scribed above are used. Calculated data are compared to the analytic
value of the power delivered by an ICE of the same length (first row).
The observed deviation is within 0.15%; a figure that would not be
reached without using methods to prevent static fields. If these fields are
not removed in accordance with the techniques suggested here, special
post-processing of data [9], [10] is needed. Otherwise, an instability
is produced by Fourier transforming, even when time-domain fields’
values converge satisfactorily.

V. CONCLUSIONS

Apart from high-frequency applications, the FDTD method is also
capable of solving static problems. The nonrecognition of this ability
has led some investigators to consider such solutions, which may cause
serious problems in the frequency domain, as numerical artifacts. In
this paper, besides proposing techniques to eliminate them, we have
presented the possibility of using the FDTD method in static and quasi-
static calculations (electric and magnetic dipoles). However, it has not
yet been determined if the FDTD method can efficiently compete with
consolidated scalar techniques because it typically still involves an ex-
cessive number of time steps needed to attain acceptable solutions.
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An Improved Algorithm of Constructing Potentials From
Cauchy Data and Its Application in Synthesis of

Nonuniform Transmission Lines

Gaobiao Xiao and Ken’ichiro Yashiro

Abstract—It is required to construct a potential function from Cauchy
data in the synthesis of arbitrarily terminated nonuniform transmission
lines. An improved algorithm for this problem is discussed in this paper.
With the proposed algorithm, not only is computation time reduced, but
the possible divergence of the potential function that sometimes occur when
adopting the successive approximation method is also avoided. It has been
applied successfully to designs of nonuniform transmission-line filters or
tapers through solving inverse problems.

Index Terms—Filter, inverse problem, nonuniform transmission lines.

I. INTRODUCTION

The synthesis of nonuniform transmission lines (NTLs) has been
investigated by many authors [1]–[4] and, among them, the methods
based on solving inverse scattering problems are probably most
promising. We have proposed a numerical method to synthesize
arbitrarily terminated NTLs by solving a related inverse classic
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Sturm–Liouville problem, which may be used to design NTL filters
or tapers [5]–[7].

In the method proposed in [5], the telegrapher’s equation that de-
scribing the voltagev(x; t) and currenti(x; t) on an NTL is cast into
a classical Sturm–Liouville equation

��00(x; �) + q(x)�(x; �) = ��(x; �) (1)

where�(x; �) = v(x; �)= Z0(x),� is the angular frequency,Z0(x)
is the characteristic impedance of the NTL, andx is the electric posi-
tion defined in [1]. The potential functionq(x) relates toZ0(x) by
[1= Z(x)]00 � q(x)[1=Z(x)] = 0.

We may synthesize an NTL in two steps. At first, approximate a req-
uisiteS-parameter in terms of entire functions by adjusting eigenvalue
sequences corresponding to (1), and then solve the inverse problem of
recoveringq(x) from those eigenvalue sequences. The first step may
be carried out by solving a constraint approximation problem, while
the inverse problem in the second step may be solved by a numerical
method, as described in [8].

Denote two linearly independent solutions of (1) byy1(x; �)
and y2(x; �). They are subject to boundary conditions of
y1(0; �) = 1; y0

1(0; �) = 0; and y2(0; �) = 0; y0

2(0; �) = 1.
Theoretically,q(x) can be recovered from the two zero sequences of
y2(`; �) andy0

2(`; �). The following integral transformation [8]–[10]
is well used:

y2(x; �) =
sin

p
�x

p
�

+
x

0

K(x; s)
sin

p
�s

p
�

ds: (2)

The kernelK(x; t) satisfies

Ktt(x; t)�Kxx(x; t) + q(x)K(x; t) = 0 (3)

K(x; x) =
1

2

x

0

q(s)ds

K(x; 0) =0: (4)

Integrating (3) by parts in a proper region yields the following
Volterra-type equation [8]:

q(x) = 2 Kt(`; 2x� `) +Kx(`; 2x� `)

�2
`

x

q(s)K(s; 2x� s)ds: (5)

K(`; 2x � `) andKx(`; 2x � `) can be calculated from�i and�i,
and are usually called Cauchy data [8]. With these Cauchy data, we
can solve (5) by the successive approximation method. A typical al-
gorithm of the successive approximation method may be organized as
follows: assume initial dataq(x) = 0 for the first iteration and solve
the kernelK(x; t) from (3) in regionj t j� x � `, then from (5), cal-
culate a renewed data ofq(x); use the renewed data ofq(x) as initial
data for the next iteration and repeat the above calculation. The process
is stopped when a stableq(x) is reached. In the case of an NTL filter,
q(x) is usually large and also oscillates rapidly. We found that about 15
iterations are often needed to get a stable numerical solution ofq(x).
Moreover, we even cannot obtain a stable numerical solution ofq(x)
with the successive approximation method when the fractional band-
width of the NTL filter is very wide. This is possibly caused by the fact
that the first guessed data ofq0(x) = 0 may be far away from the real
value ofq(x). In this paper, we present an algorithm to find the numer-
ical solutions without iterations.

Fig. 1. Mesh structure for calculatingK(x; t) andq(x).

II. I MPROVED ALGORITHM

Let x = i�, t = j�, where� = `=N , i = 0; 1; . . . ; N , j =
0; 1; . . . ; i. Here, we use the following modified formula to discretize
(5):

q(i) = 2 Kt(N; 2i�N) +Kx(N; 2i�N)

�2�

N

m=i+1

q(m)K(m; 2i�m) (6)

and from (3), we can write

K(i; j) = K(i+ 1; j + 1) +K(i+ 1; j � 1)�K(i+ 2; j)

+�2q(i+ 1)K(i+ 1; j): (7)

In this way,q(i) andK(i; j) are only related to data in regionm > i.
In other words, if those data in regionm > i are known, thenq(i) and
K(i; j) can be calculated directly.

In Fig. 1, the values at points� are all known and serve as initial data,
namely,K(N; j), K(N � 1; j), j = 0; . . . ; N andK(i; 0) = 0,
i = 0; . . . ; N .

If we examine (5) more closely, we will see that atx = `, q(`) =
2[Kt(`; `) + Kx(`; `)] is actually the exact value ofq(x) at x = `.
Certainly, we should not assume thatq(`) = 0 at first and then find
the already known data forq(`) through iterations, as in the algorithm
described in [8]. Thus, in this paper, initial data also includeq(N) =
2[Kt(N; N) + Kx(N; N)], andq(N � 1) = 2[Kt(N; N � 2) +
Kx(N; N � 2)]� 2�q(N)K(N; N � 2).

Basically, by using (6) and (7) alternatively, we can findq(N � 2)
andK(N � 2; j) from known data ofK(N; j); K(N � 1; j) and
q(N); q(N � 1). The resultant values are already those we can ex-
pect to obtain for a specified spacing�, and need not be recalculated
through iterations. In the same way, we can calculate the values of
K(i; j) andq(i) at line i = N � 3, and so on, until all the values
of K(i; j) andq(i) in regionjtj � x � ` are found. No iteration is
needed, and stable numerical solutions ofq(x) are always obtainable.

The memory needed in the present method is also much smaller. In
the successive approximation method, all the values of the kernel, an
N �N matrix, should be stored for the next iteration, while only three
successive lines of the kernel data, a3 � N matrix, need be stored in
the new method.

III. EXAMPLE

Take an NTL bandpass filter with 100% fractional bandwidth as an
example. The NTL filter is terminated withZ` at x = ` andZg at
x = 0. The incident and reflected waves atx = 0 serve as the input
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(a) (b)

(c)

Fig. 2. Results of an NTL filter with a passband of 2–6 GHz. (a) Constructed potentials. Convergentq(x) is obtained by the proposed method (new method),
while q(x) diverges by the successive approximation method (old method).N = 10000. (b) Corresponding characteristic impedance of the designed NTL filter.
(c) SimulatedjS (j!)j of the NTL filter.

signal and output signal of the filter, respectively. Thus, the frequency
response of the filter may be characterized byS11. It is assumed that
jS11j = 0:9 through the passband of 2–6 GHz, andjS11j = 0 else-
where.

Here, we choose the normalizing frequencyfc = 1 GHz, and` =
1. This means that the length of the NTL filter is the same as the
guided wavelength atfc [7]. When time delay is taken into account,
the requisiteS11(j!) may be written asS11(j!) = 0:9e�j! for ! 2
(4�; 12�). Following the algorithm described in [5] and assuming that
k(1) = 0, we use the following equations to approximateS11(j!):

y2(1; �) =
1

!

ZgZ`

Z0(0)Z0(1)
= 1 + S11

S12
(8)

y02(1; �) =
ZgZ0(1)

Z0(0)Z`
< 1 + S11

S12
(9)

where the entire functionsy2(1; �) andy02(1; �) can be expressed as

y2(1; �) =
sin

p
�

p
�

M

j=1

�j � �

Qj � �
(10)

y02(1; �) = cos
p
�

M

j=1

�j � �

Pj � �
: (11)

�j and�j are zeros ofy2(1; �) andy02(1; �), respectively. Pj =

(j � 0:5)�, Qj = j�. andM is the number of zeros taken into
account. In the example, we chooseM = 60, thus, the frequency range
under consideration is up to! = 60�, which is enough to cover the
passband. From the facts that�j and�j interlace andy2(1; �1) > 0,
y02(1; �1) < 0, we have to find�j , �j andZ(0), Z(1), which satisfy
the following equations:

y2(1; �i) = (�1)i+1 ZgZ`
Z(0)Z(1)

g(�i)p
�i

(12)

y02(1; �i) = (�1)i ZgZ(1)

Z(0)Z`
g(�i); i = 1; . . . ; M (13)

whereg(�) = j1+S11=S21j. Equations (12) and (13) correspond to
[5, eqs. (67) and (68)] (but notice that there is a misprint concerning
the signs of [5, (67) and (68)]). In addition, at� = 0, we have
y02(1; 0) = Z(1)=Z(0), which is a condition discussed in [7],
and is equivalent to the condition ofG2(0) = B2g(0), which has
been adopted in [5].

Equations (12) and (13) are nonlinear equations and can be solved
approximately by minimizing the following object function through
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adjusting�j , �j andZ(0), Z(1):

ER[�i; �i; Z(0); Z(1)]

=

M
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M
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p
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� (�1)i

ZgZ(1)
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g(�i)

2

+

M

j=1

�j

Pj
� Z(1)
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The resultant�j and�j are used to generate Cauchy data, while the
resultantZ(0) andZ(1) are used as boundary data to calculateZ(x)
from q(x). The successive approximation method described in [8]
failed to recoverq(x) from the Cauchy data. As is shown in Fig. 2(a),
q(x) diverges after two iterations. However, we can use the proposed
method to calculateq(x) without difficulty. For reference, Fig. 2(b)
and (c) shows the related characteristic impedance and simulated
jS11(j!)j of the NTL filter, respectively.

IV. CONCLUSIONS

When applied to constructingq(x) from Cauchy data, the successive
approximation method suffers from two disadvantages, i.e., several it-
erations are needed and they sometimes fail when the corresponding
q(x) is large and oscillates rapidly. In the present algorithm,q(x) can
be recovered straightforwardly from Cauchy data by using the exact
data ofq(x) atx = ` and adopting a proper discrete form of the related
integral equation; hence, the above disadvantages are avoided. The nu-
merical error of the proposed method mainly depends upon sampling
spacing�.
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The Reentrant Wide-Band Directional Filter

Anatoly Petrovich Gorbachev

Abstract—A new type of a wide-band microwave filter is described and
named the reentrant directional filter, in which resonance occurs in the
form of a traveling wave rather than in the conventional form of a standing
wave. This device is the network, which has the constant input impedance
and is manufactured as the directional coupler’s free construction. An anal-
ysis of the reentrant directional filter shows it to have advantages in the
case of wide-bands when compared to previously used directional filters.
This filter finds application in multiplexers, as well as in matched bandpass
(band-stop) filters by using planar multilayer transmission-line technology.
Experimental results verify the theoretical approach.

Index Terms—Directional filters, microwaves, multilayer, strip-line
components, wide-band.

I. INTRODUCTION

It is well known [1] that directional filters are one type of device ca-
pable of performing systems that use frequency-division multiplexing.
For example, wide-band multiplexers have been analyzed and con-
structed as described in [2].

The basic directional filter proposed in [3] has been developed in
many papers [4]–[6]. However, the above-mentioned directional filters
are themselves badly adapted to multilayer (multilevel)-strip transmis-
sion-line technology, which has been an increased interest in recent
years in RF integrated circuits. For instance, the analysis and design of
multilayer coupled-line directional couplers has recently been reported
in [7].

This paper present a novel wide-band directional filter called a
“reentrant directional filter,” which is better adapted itself to multilayer
planar transmission-line technology through the full screening of its
fragments.

II. A NALYSIS

To better understand the above-mentioned directional filter, it should
be analyzed on a base of a strip-coaxial model, although practical de-
vices remain to be constructed in multilayer-strip transmission-line re-
alization.

Fig. 1 shows the new reentrant directional filter (patent pending).
Conductors A–D are coaxial-line center conductors of characteristic
impedanceZB and electrical length�B with relative dielectric con-
stant"rB of the coaxial-line medium (brief expression—“transmission
line (ZB , �B )”) within the loopL of electrical length4�N . The loopL
is formed from the center conductor of the transmission line of charac-
teristic impedanceZN with corresponding dimensionswa, wB , t, and
b and relative dielectric constant"rN of the directional filter medium
within ground conductorG. The arms of the conductors A–D are con-
nected together by a narrow conducting link. The link is designed to be
narrow so that there will be no propagation around the end of the center
conductors, but rather, that the even and odd excitation will be termi-
nated by open and short circuits, respectively. Distancea is chosen to
avoid electromagnetic coupling between opposite edges of loop con-
ductorL. The external arms of the conductors A–D are directional filter
terminal ports 1–4, respectively.
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